AN5D: Automated Stencil Framework for High-Degree Temporal Blocking on GPUs

01/06/2020 ∙ by Kazuaki Matsumura, et al. ∙ 0

Stencil computation is one of the most widely-used compute patterns in high performance computing applications. Spatial and temporal blocking have been proposed to overcome the memory-bound nature of this type of computation by moving memory pressure from external memory to on-chip memory on GPUs. However, correctly implementing those optimizations while considering the complexity of the architecture and memory hierarchy of GPUs to achieve high performance is difficult. We propose AN5D, an automated stencil framework which is capable of automatically transforming and optimizing stencil patterns in a given C source code, and generating corresponding CUDA code. Parameter tuning in our framework is guided by our performance model. Our novel optimization strategy reduces shared memory and register pressure in comparison to existing implementations, allowing performance scaling up to a temporal blocking degree of 10. We achieve the highest performance reported so far for all evaluated stencil benchmarks on the state-of-the-art Tesla V100 GPU.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.