An Underparametrized Deep Decoder Architecture for Graph Signals

08/02/2019
by   Samuel Rey, et al.
0

While deep convolutional architectures have achieved remarkable results in a gamut of supervised applications dealing with images and speech, recent works show that deep untrained non-convolutional architectures can also outperform state-of-the-art methods in several tasks such as image compression and denoising. Motivated by the fact that many contemporary datasets have an irregular structure different from a 1D/2D grid, this paper generalizes untrained and underparametrized non-convolutional architectures to signals defined over irregular domains represented by graphs. The proposed architecture consists of a succession of layers, each of them implementing an upsampling operator, a linear feature combination, and a scalar nonlinearity. A novel element is the incorporation of upsampling operators accounting for the structure of the supporting graph, which is achieved by considering a systematic graph coarsening approach based on hierarchical clustering. The numerical results carried out in synthetic and real-world datasets showcase that the reconstruction performance can improve drastically if the information of the supporting graph topology is taken into account.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset