An Uncertainty Framework for Classification

01/16/2013
by   Loo-Nin Teow, et al.
0

We define a generalized likelihood function based on uncertainty measures and show that maximizing such a likelihood function for different measures induces different types of classifiers. In the probabilistic framework, we obtain classifiers that optimize the cross-entropy function. In the possibilistic framework, we obtain classifiers that maximize the interclass margin. Furthermore, we show that the support vector machine is a sub-class of these maximum-margin classifiers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro