An Optimal Deterministic Algorithm for Geodesic Farthest-Point Voronoi Diagrams in Simple Polygons

02/26/2021 ∙ by Haitao Wang, et al. ∙ 0

Given a set S of m point sites in a simple polygon P of n vertices, we consider the problem of computing the geodesic farthest-point Voronoi diagram for S in P. It is known that the problem has an Ω(n+mlog m) time lower bound. Previously, a randomized algorithm was proposed [Barba, SoCG 2019] that can solve the problem in O(n+mlog m) expected time. The previous best deterministic algorithms solve the problem in O(nloglog n+ mlog m) time [Oh, Barba, and Ahn, SoCG 2016] or in O(n+mlog m+mlog^2 n) time [Oh and Ahn, SoCG 2017]. In this paper, we present a deterministic algorithm of O(n+mlog m) time, which is optimal. This answers an open question posed by Mitchell in the Handbook of Computational Geometry two decades ago.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.