An IoT Real-Time Biometric Authentication System Based on ECG Fiducial Extracted Features Using Discrete Cosine Transform

08/28/2017
by   Ahmed F. Hussein, et al.
0

The conventional authentication technologies, like RFID tags and authentication cards/badges, suffer from different weaknesses, therefore a prompt replacement to use biometric method of authentication should be applied instead. Biometrics, such as fingerprints, voices, and ECG signals, are unique human characters that can be used for authentication processing. In this work, we present an IoT real-time authentication system based on using extracted ECG features to identify the unknown persons. The Discrete Cosine Transform (DCT) is used as an ECG feature extraction, where it has better characteristics for real-time system implementations. There are a substantial number of researches with a high accuracy of authentication, but most of them ignore the real-time capability of authenticating individuals. With the accuracy rate of 97.78 around 1.21 seconds of processing time, the proposed system is more suitable for use in many applications that require fast and reliable authentication processing demands.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro