An Inverting-Tube Clutching Contractile Soft Pneumatic Actuator

03/07/2019
by   Wyatt Felt, et al.
0

This paper presents the simple synergistic combination of a novel contracting soft pneumatic actuator with a soft clutch (linear brake). The device is designated the Inverting-tube Vacuum ACtuator with Clutch (InVACC). The actuator alone (no clutch) is designated "InVAC" and uses vacuum pressure to invert a thin tube into a shorter section of reinforced flexible tubing. The inverting tube acts as rolling diaphragm and a flexible tendon. This allows the actuator to contract to one third of its extended length. The contractile-force-per-unit-pressure is approximately constant over the stroke. The theoretical maximum of this force is the product of the vacuum gauge pressure and half the interior cross-sectional area of the tube. The experimental evaluation revealed hysteretic losses that depend on the actuation direction and rate. With -81 kPa, the prototype produced 12.7 N of tension during extension and 7.5 N during retraction. The reinforced tubing of the InVAC was integrated with an inner collapsible "clutching" tube to create an InVACC. The clutch is engaged by applying a positive pressure between the reinforced tube and the clutching tube, which collapses the clutching tube onto the flexible tendon. With a pressure of 50 kPa, the InVACC clutch tested in this work was able to support a peak tensile load of 120 N before slipping. Though the fatigue life of the current prototypes is limited, improved fabrication methods for this novel actuator/clutch concept will enable new applications in robotics and wearable haptic systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro