An Introduction to Neural Architecture Search for Convolutional Networks

05/22/2020
by   George Kyriakides, et al.
0

Neural Architecture Search (NAS) is a research field concerned with utilizing optimization algorithms to design optimal neural network architectures. There are many approaches concerning the architectural search spaces, optimization algorithms, as well as candidate architecture evaluation methods. As the field is growing at a continuously increasing pace, it is difficult for a beginner to discern between major, as well as emerging directions the field has followed. In this work, we provide an introduction to the basic concepts of NAS for convolutional networks, along with the major advances in search spaces, algorithms and evaluation techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro