An Introduction to Lifelong Supervised Learning

by   Shagun Sodhani, et al.

This primer is an attempt to provide a detailed summary of the different facets of lifelong learning. We start with Chapter 2 which provides a high-level overview of lifelong learning systems. In this chapter, we discuss prominent scenarios in lifelong learning (Section 2.4), provide 8 Introduction a high-level organization of different lifelong learning approaches (Section 2.5), enumerate the desiderata for an ideal lifelong learning system (Section 2.6), discuss how lifelong learning is related to other learning paradigms (Section 2.7), describe common metrics used to evaluate lifelong learning systems (Section 2.8). This chapter is more useful for readers who are new to lifelong learning and want to get introduced to the field without focusing on specific approaches or benchmarks. The remaining chapters focus on specific aspects (either learning algorithms or benchmarks) and are more useful for readers who are looking for specific approaches or benchmarks. Chapter 3 focuses on regularization-based approaches that do not assume access to any data from previous tasks. Chapter 4 discusses memory-based approaches that typically use a replay buffer or an episodic memory to save subset of data across different tasks. Chapter 5 focuses on different architecture families (and their instantiations) that have been proposed for training lifelong learning systems. Following these different classes of learning algorithms, we discuss the commonly used evaluation benchmarks and metrics for lifelong learning (Chapter 6) and wrap up with a discussion of future challenges and important research directions in Chapter 7.


Autonomous Farm Vehicles: Prototype of Power Reaper

Chapter 2 will begin with introduction of Agricultural Robotics. There w...

Reinforcement Learning for Physical Layer Communications

In this chapter, we will give comprehensive examples of applying RL in o...

Learning under Concept Drift: an Overview

Concept drift refers to a non stationary learning problem over time. The...

Deep Learning and Reinforcement Learning for Autonomous Unmanned Aerial Systems: Roadmap for Theory to Deployment

Unmanned Aerial Systems (UAS) are being increasingly deployed for commer...

Ten New Benchmarks for Optimization

Benchmarks are used for testing new optimization algorithms and their va...

Prosody: The Rhythms and Melodies of Speech

The present contribution is a tutorial on selected aspects of prosody, t...

Emerging Directions in Geophysical Inversion

In this chapter, we survey some recent developments in the field of geop...

Please sign up or login with your details

Forgot password? Click here to reset