An intelligent financial portfolio trading strategy using deep Q-learning

07/08/2019
by   Hyungjun Park, et al.
0

A goal of financial portfolio trading is maximizing the trader's utility by allocating capital to assets in a portfolio in the investment horizon. Our study suggests an approach for deriving an intelligent portfolio trading strategy using deep Q-learning. In this approach, we introduce a Markov decision process model to enable an agent to learn about the financial environment and develop a deep neural network structure to approximate a Q-function. In addition, we devise three techniques to derive a trading strategy that chooses reasonable actions and is applicable to the real world. First, the action space of the learning agent is modeled as an intuitive set of trading directions that can be carried out for individual assets in the portfolio. Second, we introduce a mapping function that can replace an infeasible agent action in each state with a similar and valuable action to derive a reasonable trading strategy. Last, we introduce a method by which an agent simulates all feasible actions and learns about these experiences to utilize the training data efficiently. To validate our approach, we conduct backtests for two representative portfolios, and we find that the intelligent strategy derived using our approach is superior to the benchmark strategies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset