An Influence-based Approach for Root Cause Alarm Discovery in Telecom Networks

05/07/2021
by   Keli Zhang, et al.
0

Alarm root cause analysis is a significant component in the day-to-day telecommunication network maintenance, and it is critical for efficient and accurate fault localization and failure recovery. In practice, accurate and self-adjustable alarm root cause analysis is a great challenge due to network complexity and vast amounts of alarms. A popular approach for failure root cause identification is to construct a graph with approximate edges, commonly based on either event co-occurrences or conditional independence tests. However, considerable expert knowledge is typically required for edge pruning. We propose a novel data-driven framework for root cause alarm localization, combining both causal inference and network embedding techniques. In this framework, we design a hybrid causal graph learning method (HPCI), which combines Hawkes Process with Conditional Independence tests, as well as propose a novel Causal Propagation-Based Embedding algorithm (CPBE) to infer edge weights. We subsequently discover root cause alarms in a real-time data stream by applying an influence maximization algorithm on the weighted graph. We evaluate our method on artificial data and real-world telecom data, showing a significant improvement over the best baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro