An Incremental SVD Method for Non-Fickian Flows in Porous Media: Addressing Storage and Computational Challenges
It is well known that the numerical solution of the Non-Fickian flows at the current stage depends on all previous time instances. Consequently, the storage requirement increases linearly, while the computational complexity grows quadratically with the number of time steps. This presents a significant challenge for numerical simulations, and to the best of our knowledge, it remains an unresolved issue. In this paper, we make the assumption that the solution data exhibits approximate low rank. Here, we present a memory-free algorithm, based on the incremental SVD technique, that exhibits only linear growth in computational complexity as the number of time steps increases. We prove that the error between the solutions generated by the conventional algorithm and our innovative approach lies within the scope of machine error. Numerical experiments are showcased to affirm the accuracy and efficiency gains in terms of both memory usage and computational expenses.
READ FULL TEXT