An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams
Existing fuzzy neural networks (FNNs) are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep fuzzy neural network, namely deep evolving fuzzy neural networks (DEVFNN). Fuzzy rules can be automatically extracted from data streams or removed if they play little role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely Generic Classifier (gClass), drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of input space dimension due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using six datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four state-of the art data stream methods and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy.
READ FULL TEXT