An improved upper bound on self-dual codes over finite fields GF(11), GF(19), and GF(23)

02/16/2021
by   Whan-Hyuk Choi, et al.
0

This paper gives new methods of constructing symmetric self-dual codes over a finite field GF(q) where q is a power of an odd prime. These methods are motivated by the well-known Pless symmetry codes and quadratic double circulant codes. Using these methods, we construct an amount of symmetric self-dual codes over GF(11), GF(19), and GF(23) of every length less than 42. We also find 153 new self-dual codes up to equivalence: they are [32, 16, 12], [36, 18, 13], and [40, 20,14] codes over GF(11), [36, 18, 14] and [40, 20, 15] codes over GF(19), and [32, 16, 12], [36, 18, 14], and [40, 20, 15] codes over GF(23). They all have new parameters with respect to self-dual codes. Consequently, we improve bounds on the highest minimum distance of self-dual codes, which have not been significantly updated for almost two decades.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset