An Improved Bound for the Tree Conjecture in Network Creation Games

06/09/2021
by   Jack Dippel, et al.
0

We study Nash equilibria in the network creation game of Fabrikant et al.[10]. In this game a vertex can buy an edge to another vertex for a cost of α, and the objective of each vertex is to minimize the sum of the costs of the edges it purchases plus the sum of the distances to every other vertex in the resultant network. A long-standing conjecture states that if α≥ n then every Nash equilibrium in the game is a spanning tree. We prove the conjecture holds for any α>3n-3.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

06/30/2021

On Tree Equilibria in Max-Distance Network Creation Games

We study the Nash equilibrium and the price of anarchy in the max-distan...
11/09/2017

On Strong Equilibria and Improvement Dynamics in Network Creation Games

We study strong equilibria in network creation games. These form a class...
09/21/2018

On the Constant Price of Anarchy Conjecture

We study Nash equilibria and the price of anarchy in the classic model o...
11/15/2021

Metric dimension on sparse graphs and its applications to zero forcing sets

The metric dimension dim(G) of a graph G is the minimum cardinality of a...
10/15/2019

Approximate Equilibria in Non-constant-sum Colonel Blotto and Lottery Blotto Games with Large Numbers of Battlefields

In the Colonel Blotto game, two players with a fixed budget simultaneous...
12/28/2020

New Insights into the Structure of Equilibria for the Network Creation Game

We study the sum classic network creation game introduced by Fabrikant e...
12/04/2017

An Upper Bound on the GKS Game via Max Bipartite Matching

The sensitivity conjecture is a longstanding conjecture concerning the r...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.