An imprecise-probabilistic characterization of frequentist statistical inference

12/20/2021
by   Ryan Martin, et al.
0

Between the two dominant schools of thought in statistics, namely, Bayesian and classical/frequentist, a main difference is that the former is grounded in the mathematically rigorous theory of probability while the latter is not. In this paper, I show that the latter is grounded in a different but equally mathematically rigorous theory of imprecise probability. Specifically, I show that for every suitable testing or confidence procedure with error rate control guarantees, there exists a consonant plausibility function whose derived testing or confidence procedure is no less efficient. Beyond its foundational implications, this characterization has at least two important practical consequences: first, it simplifies the interpretation of p-values and confidence regions, thus creating opportunities for improved education and scientific communication; second, the constructive proof of the main results leads to a strategy for new and improved methods in challenging inference problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro