Log In Sign Up

An Extensive Experimental Evaluation of Automated Machine Learning Methods for Recommending Classification Algorithms (Extended Version)

by   Márcio P. Basgalupp, et al.

This paper presents an experimental comparison among four Automated Machine Learning (AutoML) methods for recommending the best classification algorithm for a given input dataset. Three of these methods are based on Evolutionary Algorithms (EAs), and the other is Auto-WEKA, a well-known AutoML method based on the Combined Algorithm Selection and Hyper-parameter optimisation (CASH) approach. The EA-based methods build classification algorithms from a single machine learning paradigm: either decision-tree induction, rule induction, or Bayesian network classification. Auto-WEKA combines algorithm selection and hyper-parameter optimisation to recommend classification algorithms from multiple paradigms. We performed controlled experiments where these four AutoML methods were given the same runtime limit for different values of this limit. In general, the difference in predictive accuracy of the three best AutoML methods was not statistically significant. However, the EA evolving decision-tree induction algorithms has the advantage of producing algorithms that generate interpretable classification models and that are more scalable to large datasets, by comparison with many algorithms from other learning paradigms that can be recommended by Auto-WEKA. We also observed that Auto-WEKA has shown meta-overfitting, a form of overfitting at the meta-learning level, rather than at the base-learning level.


Algorithm Selection on a Meta Level

The problem of selecting an algorithm that appears most suitable for a s...

Evolutionary algorithms for constructing an ensemble of decision trees

Most decision tree induction algorithms are based on a greedy top-down r...

A Robust Experimental Evaluation of Automated Multi-Label Classification Methods

Automated Machine Learning (AutoML) has emerged to deal with the selecti...

Auto-Sklearn 2.0: The Next Generation

Automated Machine Learning, which supports practitioners and researchers...

MetaDT: Meta Decision Tree for Interpretable Few-Shot Learning

Few-Shot Learning (FSL) is a challenging task, which aims to recognize n...

Machine Learning for Online Algorithm Selection under Censored Feedback

In online algorithm selection (OAS), instances of an algorithmic problem...

Scalable Prototype Selection by Genetic Algorithms and Hashing

Classification in the dissimilarity space has become a very active resea...