An experiment with denotational semantics

05/04/2019
by   Blikle Andrzej, et al.
0

The paper is devoted to showing how to systematically design a programming language in 'reverse order', i.e. from denotations to syntax. This construction is developed in an algebraic framework consisting of three many-sorted algebras: of denotations, of an abstract syntax and of a concrete syntax. These algebras are constructed in such a way that there is a unique homomorphism from concrete syntax to denotations, which constitutes the denotational semantics of the language. Besides its algebraic framework, the model is set-theoretic, i.e. the denotational domains are just sets, rather than Scott's reflexive domains. The method is illustrated by a layer-by-layer development of a virtual language Lingua: an applicative layer, an imperative layer (with recursive procedures) and an SQL layer where Lingua is regarded as an API (Application Programming Interface) for an SQL engine. The latter is given a denotational semantics as well. The langue is equipped with a strong typing mechanism which covers basic types (numbers, Booleans, etc.), lists, arrays, record and their arbitrary combinations plus SQL-like types: rows, tables and databases. The model of types includes SQL integrity constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro