An exactly mass conserving space-time embedded-hybridized discontinuous Galerkin method for the Navier-Stokes equations on moving domains

10/18/2019
by   Tamas L. Horvath, et al.
0

This paper presents a space-time embedded-hybridized discontinuous Galerkin (EHDG) method for the Navier–Stokes equations on moving domains. This method uses a different hybridization compared to the space-time hybridized discontinuous Galerkin (HDG) method we presented previously in (Int. J. Numer. Meth. Fluids 89: 519–532, 2019). In the space-time EHDG method the velocity trace unknown is continuous while the pressure trace unknown is discontinuous across facets. In the space-time HDG method, all trace unknowns are discontinuous across facets. Alternatively, we present also a space-time embedded discontinuous Galerkin (EDG) method in which all trace unknowns are continuous across facets. The advantage of continuous trace unknowns is that the formulation has fewer global degrees-of-freedom for a given mesh than when using discontinuous trace unknowns. Nevertheless, the discrete velocity field obtained by the space-time EHDG and EDG methods, like the space-time HDG method, is exactly divergence-free, even on moving domains. However, only the space-time EHDG and HDG methods result in divergence-conforming velocity fields. An immediate consequence of this is that the space-time EHDG and HDG discretizations of the conservative form of the Navier–Stokes equations are energy stable. The space-time EDG method, on the other hand, requires a skew-symmetric formulation of the momentum advection term to be energy-stable. Numerical examples will demonstrate the differences in solution obtained by the space-time EHDG, EDG, and HDG methods.

READ FULL TEXT

Authors

page 11

page 12

page 16

page 18

04/25/2017

A hybridizable discontinuous Galerkin method for the Navier--Stokes equations with pointwise divergence-free velocity field

We introduce a hybridizable discontinuous Galerkin method for the incomp...
01/06/2022

A Divergence-Conforming Hybridized Discontinuous Galerkin Method for the Incompressible Magnetohydrodynamics Equations

We introduce a new hybridized discontinuous Galerkin method for the inco...
09/15/2021

An energy-based discontinuous Galerkin method for dynamic Euler-Bernoulli beam equations

In this paper, an energy-based discontinuous Galerkin method for dynamic...
02/21/2022

Use of algebraic dual representations in domain decomposition methods for Darcy flow in 3D domain

In this work we use algebraic dual representations in conjunction with d...
03/15/2020

A novel staggered semi-implicit space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations

A new high order accurate staggered semi-implicit space-time discontinuo...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.