An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen-Cahn equation
In this work, we propose a Crank-Nicolson-type scheme with variable steps for the time fractional Allen-Cahn equation. The proposed scheme is shown to be unconditionally stable (in a variational energy sense), and is maximum bound preserving. Interestingly, the discrete energy stability result obtained in this paper can recover the classical energy dissipation law when the fractional order α→ 1. That is, our scheme can asymptotically preserve the energy dissipation law in the α→ 1 limit. This seems to be the first work on variable time-stepping scheme that can preserve both the energy stability and the maximum bound principle. Our Crank-Nicolson scheme is build upon a reformulated problem associated with the Riemann-Liouville derivative. As a by product, we build up a reversible transformation between the L1-type formula of the Riemann-Liouville derivative and a new L1-type formula of the Caputo derivative, with the help of a class of discrete orthogonal convolution kernels. This is the first time such a discrete transformation is established between two discrete fractional derivatives. We finally present several numerical examples with an adaptive time-stepping strategy to show the effectiveness of the proposed scheme.
READ FULL TEXT