An end-to-end generative framework for video segmentation and recognition

09/07/2015
by   Hilde Kuehne, et al.
0

We describe an end-to-end generative approach for the segmentation and recognition of human activities. In this approach, a visual representation based on reduced Fisher Vectors is combined with a structured temporal model for recognition. We show that the statistical properties of Fisher Vectors make them an especially suitable front-end for generative models such as Gaussian mixtures. The system is evaluated for both the recognition of complex activities as well as their parsing into action units. Using a variety of video datasets ranging from human cooking activities to animal behaviors, our experiments demonstrate that the resulting architecture outperforms state-of-the-art approaches for larger datasets, i.e. when sufficient amount of data is available for training structured generative models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset