An Empirical Investigation of 3D Anomaly Detection and Segmentation

03/10/2022
by   Eliahu Horwitz, et al.
13

Anomaly detection and segmentation in images has made tremendous progress in recent years while 3D information has often been ignored. The objective of this paper is to further understand the benefit and role of 3D as opposed to color in image anomaly detection. Our study begins by presenting a surprising finding: standard color-only anomaly segmentation methods, when applied to 3D datasets, significantly outperform all current methods. On the other hand, we observe that color-only methods are insufficient for images containing geometric anomalies where shape cannot be unambiguously inferred from 2D. This suggests that better 3D methods are needed. We investigate different representations for 3D anomaly detection and discover that handcrafted orientation-invariant representations are unreasonably effective on this task. We uncover a simple 3D-only method that outperforms all recent approaches while not using deep learning, external pretraining datasets, or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with 2D color features, granting us the best current results by a large margin (Pixel-wise ROCAUC: 99.2 discussing future challenges for 3D anomaly detection and segmentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset