An Elementary Analysis of the Probability That a Binomial Random Variable Exceeds Its Expectation

12/01/2017
by   Benjamin Doerr, et al.
0

We give an elementary proof of the fact that a binomial random variable X with parameters n and 0.29/n < p < 1 with probability at least 1/4 strictly exceeds its expectation. We also show that for 1/n < p < 1 - 1/n, X exceeds its expectation by more than one with probability at least 0.0370. Both probabilities approach 1/2 when np and n(1-p) tend to infinity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro