An Efficient Semismooth Newton Based Algorithm for Convex Clustering

02/20/2018
by   Yancheng Yuan, et al.
0

Clustering may be the most fundamental problem in unsupervised learning which is still active in machine learning research because its importance in many applications. Popular methods like K-means, may suffer from instability as they are prone to get stuck in its local minima. Recently, the sum-of-norms (SON) model (also known as clustering path), which is a convex relaxation of hierarchical clustering model, has been proposed in [7] and [5] Although numerical algorithms like ADMM and AMA are proposed to solve convex clustering model [2], it is known to be very challenging to solve large-scale problems. In this paper, we propose a semi-smooth Newton based augmented Lagrangian method for large-scale convex clustering problems. Extensive numerical experiments on both simulated and real data demonstrate that our algorithm is highly efficient and robust for solving large-scale problems. Moreover, the numerical results also show the superior performance and scalability of our algorithm compared to existing first-order methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset