An efficient multiple harmonic balance method for computing quasi-periodic responses of nonlinear systems

04/26/2023
by   Qisi Wang, et al.
0

Quasi-periodic responses composed of multiple base frequencies widely exist in science and engineering problems. The multiple harmonic balance (MHB) method is one of the most commonly used approaches for such problems. However, it is limited by low-order estimations due to complex symbolic operations in practical uses. Many variants have been developed to improve the MHB method, among which the time domain MHB-like methods are regarded as crucial improvements because of their high efficiency and simple derivation. But there is still one main drawback remaining to be addressed. The time domain MHB-like methods negatively suffer from non-physical solutions, which have been shown to be caused by aliasing (mixtures of the high-order into the low-order harmonics). Inspired by the collocation-based harmonic balancing framework recently established by our group, we herein propose a reconstruction multiple harmonic balance (RMHB) method to reconstruct the conventional MHB method using discrete time domain collocations. Our study shows that the relation between the MHB and time domain MHB-like methods is determined by an aliasing matrix, which is non-zero when aliasing occurs. On this basis, a conditional equivalence is established to form the RMHB method. Three numerical examples demonstrate that this new method is more robust and efficient than the state-of-the-art methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset