An Efficient Monte Carlo-based Probabilistic Time-Dependent Routing Calculation Targeting a Server-Side Car Navigation System

01/18/2019 ∙ by Emanuele Vitali, et al. ∙ 0

Incorporating speed probability distribution to the computation of the route planning in car navigation systems guarantees more accurate and precise responses. In this paper, we propose a novel approach for dynamically selecting the number of samples used for the Monte Carlo simulation to solve the Probabilistic Time-Dependent Routing (PTDR) problem, thus improving the computation efficiency. The proposed method is used to determine in a proactive manner the number of simulations to be done to extract the travel-time estimation for each specific request while respecting an error threshold as output quality level. The methodology requires a reduced effort on the application development side. We adopted an aspect-oriented programming language (LARA) together with a flexible dynamic autotuning library (mARGOt) respectively to instrument the code and to take tuning decisions on the number of samples improving the execution efficiency. Experimental results demonstrate that the proposed adaptive approach saves a large fraction of simulations (between 36 different traffic situations, paths and error requirements. Given the negligible runtime overhead of the proposed approach, it results in an execution-time speedup between 1.5x and 5.1x. This speedup is reflected at infrastructure-level in terms of a reduction of around 36 resources needed to support the whole navigation pipeline.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.