An Efficient Message-Passing Algorithm for the M-Best MAP Problem

10/16/2012
by   Dhruv Batra, et al.
0

Much effort has been directed at algorithms for obtaining the highest probability configuration in a probabilistic random field model known as the maximum a posteriori (MAP) inference problem. In many situations, one could benefit from having not just a single solution, but the top M most probable solutions known as the M-Best MAP problem. In this paper, we propose an efficient message-passing based algorithm for solving the M-Best MAP problem. Specifically, our algorithm solves the recently proposed Linear Programming (LP) formulation of M-Best MAP [7], while being orders of magnitude faster than a generic LP-solver. Our approach relies on studying a particular partial Lagrangian relaxation of the M-Best MAP LP which exposes a natural combinatorial structure of the problem that we exploit.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro