An efficient greedy training algorithm for neural networks and applications in PDEs
Recently, neural networks have been widely applied for solving partial differential equations. However, the resulting optimization problem brings many challenges for current training algorithms. This manifests itself in the fact that the convergence order that has been proven theoretically cannot be obtained numerically. In this paper, we develop a novel greedy training algorithm for solving PDEs which builds the neural network architecture adaptively. It is the first training algorithm that observes the convergence order of neural networks numerically. This innovative algorithm is tested on several benchmark examples in both 1D and 2D to confirm its efficiency and robustness.
READ FULL TEXT