An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem

06/04/2019 ∙ by Chaitanya K. Joshi, et al. ∙ 46

This paper introduces a new learning-based approach for approximately solving the Travelling Salesman Problem on 2D Euclidean graphs. We use deep Graph Convolutional Networks to build efficient TSP graph representations and output tours in a non-autoregressive manner via highly parallelized beam search. Our approach outperforms all recently proposed autoregressive deep learning techniques in terms of solution quality, inference speed and sample efficiency for problem instances of fixed graph sizes. In particular, we reduce the average optimality gap from 0.52 1.39 approaches for TSP, our approach falls short of standard Operations Research solvers.

READ FULL TEXT

Authors

page 16

page 17

Code Repositories

graph-convnet-tsp

Code for the paper 'An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem' (arXiv Pre-print)


view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.