An efficient decoder for a linear distance quantum LDPC code

06/14/2022
by   Shouzhen Gu, et al.
0

Recent developments have shown the existence of quantum low-density parity check (qLDPC) codes with constant rate and linear distance. A natural question concerns the efficient decodability of these codes. In this paper, we present a linear time decoder for the recent quantum Tanner codes construction of asymptotically good qLDPC codes, which can correct all errors of weight up to a constant fraction of the blocklength. Our decoder is an iterative algorithm which searches for corrections within constant-sized regions. At each step, the corrections are found by reducing a locally defined and efficiently computable cost function which serves as a proxy for the weight of the remaining error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset