An efficient Chorin-Temam projection proper orthogonal decomposition based reduced-order model for nonstationary Stokes equations

01/19/2022
by   Xi Li, et al.
0

In this paper, we propose an efficient proper orthogonal decomposition based reduced-order model(POD-ROM) for nonstationary Stokes equations, which combines the classical projection method with POD technique. This new scheme mainly owns two advantages: the first one is low computational costs since the classical projection method decouples the reduced-order velocity variable and reduced-order pressure variable, and POD technique further improves the computational efficiency; the second advantage consists of circumventing the verification of classical LBB/inf-sup condition for mixed POD spaces with the help of pressure stabilized Petrov-Galerkin(PSPG)-type projection method, where the pressure stabilization term is inherent which allows the use of non inf-sup stable elements without adding extra stabilization terms. We first obtain the convergence of PSPG-type finite element projection scheme, and then analyze the proposed projection POD-ROM's stability and convergence. Numerical experiments validate out theoretical results.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro