An efficient and straightforward online quantization method for a data stream through remove-birth updating

06/21/2023
by   Kazuhisa Fujita, et al.
0

The growth of network-connected devices is creating an explosion of data, known as big data, and posing significant challenges to efficient data analysis. This data is generated continuously, creating a dynamic flow known as a data stream. The characteristics of a data stream may change dynamically, and this change is known as concept drift. Consequently, a method for handling data streams must efficiently reduce their volume while dynamically adapting to these changing characteristics. This paper proposes a simple online vector quantization method for concept drift. The proposed method identifies and replaces units with low win probability through remove-birth updating, thus achieving a rapid adaptation to concept drift. Furthermore, the results of this study show that the proposed method can generate minimal dead units even in the presence of concept drift. This study also suggests that some metrics calculated from the proposed method will be helpful for drift detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset