An Efficient and Accurate Memristive Memory for Array-based Spiking Neural Networks

06/11/2023
by   Hritom Das, et al.
0

Memristors provide a tempting solution for weighted synapse connections in neuromorphic computing due to their size and non-volatile nature. However, memristors are unreliable in the commonly used voltage-pulse-based programming approaches and require precisely shaped pulses to avoid programming failure. In this paper, we demonstrate a current-limiting-based solution that provides a more predictable analog memory behavior when reading and writing memristive synapses. With our proposed design READ current can be optimized by about 19x compared to the 1T1R design. Moreover, our proposed design saves about 9x energy compared to the 1T1R design. Our 3T1R design also shows promising write operation which is less affected by the process variation in MOSFETs and the inherent stochastic behavior of memristors. Memristors used for testing are hafnium oxide based and were fabricated in a 65nm hybrid CMOS-memristor process. The proposed design also shows linear characteristics between the voltage applied and the resulting resistance for the writing operation. The simulation and measured data show similar patterns with respect to voltage pulse-based programming and current compliance-based programming. We further observed the impact of this behavior on neuromorphic-specific applications such as a spiking neural network

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset