An Axiomatic Perspective on the Performance Effects of End-Host Path Selection

by   Simon Scherrer, et al.

In various contexts of networking research, end-host path selection has recently regained momentum as a design principle. While such path selection has the potential to increase performance and security of networks, there is a prominent concern that it could also lead to network instability (i.e., flow-volume oscillation) if paths are selected in a greedy, load-adaptive fashion. However, the extent and the impact vectors of instability caused by path selection are rarely concretized or quantified, which is essential to discuss the merits and drawbacks of end-host path selection. In this work, we investigate the effect of end-host path selection on various metrics of networks both qualitatively and quantitatively. To achieve general and fundamental insights, we leverage the recently introduced axiomatic perspective on congestion control and adapt it to accommodate joint algorithms for path selection and congestion control, i.e., multi-path congestion-control protocols. Using this approach, we identify equilibria of the multi-path congestion-control dynamics and analytically characterize these equilibria with respect to important metrics of interest in networks (the 'axioms') such as efficiency, fairness, and loss avoidance. Moreover, we analyze how these axiomatic ratings for a general network change compared to a scenario without path selection, thereby obtaining an interpretable and quantititative formalization of the performance impact of end-host path-selection. Finally, we show that there is a fundamental trade-off in multi-path congestion-control protocol design between efficiency, stability, and loss avoidance on one side and fairness and responsiveness on the other side.



There are no comments yet.


page 1

page 2

page 3

page 4


Incentivizing Stable Path Selection in Future Internet Architectures

By delegating path control to end-hosts, future Internet architectures o...

Adaptive Cheapest Path First Scheduling in a Transport-Layer Multi-Path Tunnel Context

Bundling multiple access technologies increases capacity, resiliency and...

MPTCP Linux Kernel Congestion Controls

MultiPath TCP (MPTCP) is a promising protocol which brings new light to ...

Towards Predicting Efficient and Anonymous Tor Circuits

The Tor anonymity system provides online privacy for millions of users, ...

The Value of Information in Selfish Routing

Path selection by selfish agents has traditionally been studied by compa...

Composite Metrics for Network Security Analysis

Security metrics present the security level of a system or a network in ...

Tempest: Temporal Dynamics in Anonymity Systems

Many recent proposals for anonymous communication omit from their securi...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.