An autoencoder wavelet based deep neural network with attention mechanism for multistep prediction of plant growth

by   Bashar Alhnaity, et al.

Multi-step prediction is considered of major significance for time series analysis in many real life problems. Existing methods mainly focus on one-step-ahead forecasting, since multiple step forecasting generally fails due to accumulation of prediction errors. This paper presents a novel approach for predicting plant growth in agriculture, focusing on prediction of plant Stem Diameter Variations (SDV). The proposed approach consists of three main steps. At first, wavelet decomposition is applied to the original data, as to facilitate model fitting and reduce noise in them. Then an encoder-decoder framework is developed using Long Short Term Memory (LSTM) and used for appropriate feature extraction from the data. Finally, a recurrent neural network including LSTM and an attention mechanism is proposed for modelling long-term dependencies in the time series data. Experimental results are presented which illustrate the good performance of the proposed approach and that it significantly outperforms the existing models, in terms of error criteria such as RMSE, MAE and MAPE.


page 1

page 2

page 3

page 4


Time Series Forecasting Based on Augmented Long Short-Term Memory

In this paper, we use recurrent autoencoder model to predict the time se...

Temporal Pattern Attention for Multivariate Time Series Forecasting

Forecasting multivariate time series data, such as prediction of electri...

A Deep Learning Approach for Air Pollution Forecasting in South Korea Using Encoder-Decoder Networks & LSTM

Tackling air pollution is an imperative problem in South Korea, especial...

A Spatial-Temporal Decomposition Based Deep Neural Network for Time Series Forecasting

Spatial time series forecasting problems arise in a broad range of appli...

Predicting Berth Stay for Tanker Terminals: A Systematic and Dynamic Approach

Given the trend of digitization and increasing number of maritime transp...

An interpretable LSTM neural network for autoregressive exogenous model

In this paper, we propose an interpretable LSTM recurrent neural network...

Continuous QoE Prediction Based on WaveNet

Continuous QoE prediction is crucial in the purpose of maximizing viewer...

Please sign up or login with your details

Forgot password? Click here to reset