An Augmented Autoregressive Approach to HTTP Video Stream Quality Prediction
HTTP-based video streaming technologies allow for flexible rate selection strategies that account for time-varying network conditions. Such rate changes may adversely affect the user's Quality of Experience; hence online prediction of the time varying subjective quality can lead to perceptually optimised bitrate allocation policies. Recent studies have proposed to use dynamic network approaches for continuous-time prediction; yet they do not consider multiple video quality models as inputs nor consider forecasting ensembles. Here we address the problem of predicting continuous-time subjective quality using multiple inputs fed to a non-linear autoregressive network. By considering multiple network configurations and by applying simple averaging forecasting techniques, we are able to considerably improve prediction performance and decrease forecasting errors.
READ FULL TEXT