An Asymptotic Theory of Joint Sequential Changepoint Detection and Identification for General Stochastic Models

02/02/2021
by   Alexander G. Tartakovsky, et al.
0

The paper addresses a joint sequential changepoint detection and identification/isolation problem for a general stochastic model, assuming that the observed data may be dependent and non-identically distributed, the prior distribution of the change point is arbitrary, and the post-change hypotheses are composite. The developed detection-identification theory generalizes the changepoint detection theory developed by Tartakovsky (2019) to the case of multiple composite post-change hypotheses when one has not only to detect a change as quickly as possible but also to identify (or isolate) the true post-change distribution. We propose a multi-hypothesis change detection-identification rule and show that it is nearly optimal, minimizing moments of the delay to detection as the probability of a false alarm and the probabilities of misidentification go to zero.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro