An Approximation Theory Framework for Measure-Transport Sampling Algorithms
This article presents a general approximation-theoretic framework to analyze measure-transport algorithms for sampling and characterizing probability measures. Sampling is a task that frequently arises in data science and uncertainty quantification. We provide error estimates in the continuum limit, i.e., when the measures (or their densities) are given, but when the transport map is discretized or approximated using a finite-dimensional function space. Our analysis relies on the regularity theory of transport maps, as well as on classical approximation theory for high-dimensional functions. A third element of our analysis, which is of independent interest, is the development of new stability estimates that relate the normed distance between two maps to the divergence between the pushforward measures they define. We further present a series of applications where quantitative convergence rates are obtained for practical problems using Wasserstein metrics, maximum mean discrepancy, and Kullback-Leibler divergence. Specialized rates for approximations of the popular triangular Knöthe-Rosenblatt maps are obtained, followed by numerical experiments that demonstrate and extend our theory.
READ FULL TEXT