An Application of CNNs to Time Sequenced One Dimensional Data in Radiation Detection

08/28/2019
by   Eric T. Moore, et al.
0

A Convolutional Neural Network architecture was used to classify various isotopes of time-sequenced gamma-ray spectra, a typical output of a radiation detection system of a type commonly fielded for security or environmental measurement purposes. A two-dimensional surface (waterfall plot) in time-energy space is interpreted as a monochromatic image and standard image-based CNN techniques are applied. This allows for the time-sequenced aspects of features in the data to be discovered by the network, as opposed to standard algorithms which arbitrarily time bin the data to satisfy the intuition of a human spectroscopist. The CNN architecture and results are presented along with a comparison to conventional techniques. The results of this novel application of image processing techniques to radiation data will be presented along with a comparison to more conventional adaptive methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro