An Analysis of an Integrated Mathematical Modeling – Artificial Neural Network Approach for the Problems with a Limited Learning Dataset

11/08/2019
by   Szymon Buchaniec, et al.
0

One of the most common and universal problems in science is to investigate a function. The prediction can be made by an Artificial Neural Network (ANN) or a mathematical model. Both approaches have their advantages and disadvantages. Mathematical models were sought as more trustworthy as their prediction is based on the laws of physics expressed in the form of mathematical equations. However, the majority of existing mathematical models include different empirical parameters, and both approaches inherit inevitable experimental errors. At the same time, the approximation of neural networks can reproduce the solution extremely well if fed with a sufficient amount of data. The difference is that an ANN requires big data to build its accurate approximation whereas a typical mathematical model needs just several data points to estimate an empirical constant. Therefore, the common problem that developer meet is the inaccuracy of mathematical models and artificial neural network. An another common challenge is the computational complexity of the mathematical models, or lack of data for a sufficient precision of the Artificial Neural Networks. In the presented paper those problems are addressed using the integration of a mathematical model with an artificial neural network. In the presented analysis, an ANN predicts just a part of the mathematical model and its weights and biases are adjusted based on the output of the mathematical model. The performance of Integrated Mathematical modeling - Artificial Neural Network (IMANN) is compared to a Dense Neural Network (DNN) with the use of the benchmarking functions. The obtained calculation results indicate that such an approach could lead to an increase of precision as well as limiting the data-set required for learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro