An Algorithm and Heuristic based on Normalized Mutual Information for Dimensionality Reduction and Classification of Hyperspectral images
In the feature classification domain, the choice of data affects widely the results. The Hyperspectral image (HSI), is a set of more than a hundred bidirectional measures (called bands), of the same region (called ground truth map: GT). The HSI is modelized at a set of N vectors. So we have N features (or attributes) expressing N vectors of measures for C substances (called classes). The problematic is that it's pratically impossible to investgate all possible subsets. So we must find K vectors among N, such as relevant and no redundant ones; in order to classify substances. Here we introduce an algorithm based on Normalized Mutual Information to select relevant and no redundant bands, necessary to increase classification accuracy of HSI. Keywords: Feature Selection, Normalized Mutual information, Hyperspectral images, Classification, Redundancy.
READ FULL TEXT