An Algebraic System for Constructing Cryptographic Permutations over Finite Fields
In this paper we identify polynomial dynamical systems over finite fields as the central component of almost all iterative block cipher design strategies over finite fields. We propose a generalized triangular polynomial dynamical system (GTDS), and give a generic algebraic definition of iterative (keyed) permutation using GTDS. Our GTDS-based generic definition is able to describe widely used and well-known design strategies such as substitution permutation network (SPN), Feistel network and their variants among others. We show that the Lai-Massey design strategy for (keyed) permutations is also described by the GTDS. Our generic algebraic definition of iterative permutation is particularly useful for instantiating and systematically studying block ciphers and hash functions over 𝔽_p aimed for multiparty computation and zero-knowledge based cryptographic protocols. Finally, we provide the discrepancy analysis a technique used to measure the (pseudo-)randomness of a sequence, for analyzing the randomness of the sequence generated by the generic permutation or block cipher described by GTDS.
READ FULL TEXT