An Algebraic Framework for Structured Epidemic Modeling

02/28/2022
by   Sophie Libkind, et al.
0

Pandemic management requires that scientists rapidly formulate and analyze epidemiological models in order to forecast the spread of disease and the effects of mitigation strategies. Scientists must modify existing models and create novel ones in light of new biological data and policy changes such as social distancing and vaccination. Traditional scientific modeling workflows detach the structure of a model – its submodels and their interactions – from its implementation in software. Consequently, incorporating local changes to model components may require global edits to the code-base through a manual, time-intensive, and error-prone process. We propose a compositional modeling framework that uses high-level algebraic structures to capture domain-specific scientific knowledge and bridge the gap between how scientists think about models and the code that implements them. These algebraic structures, grounded in applied category theory, simplify and expedite modeling tasks such as model specification, stratification, analysis, and calibration. With their structure made explicit, models also become easier to communicate, criticize, and refine in light of stakeholder feedback.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset