An adaptive cognitive sensor node for ECG monitoring in the Internet of Medical Things

06/11/2021
by   Matteo Antonio Scrugli, et al.
0

The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple clinical trials and healthcare procedures. Cardiovascular diseases monitoring, usually involving electrocardiogram (ECG) traces analysis, is one of the most promising and high-impact applications. Nevertheless, to fully exploit the potential of IoMT in this domain, some steps forward are needed. First, the edge-computing paradigm must be added to the picture. A certain level of near-sensor processing has to be enabled, to improve the scalability, portability, reliability, responsiveness of the IoMT nodes. Second, novel, increasingly accurate, data analysis algorithms, such as those based on artificial intelligence and Deep Learning, must be exploited. To reach these objectives, designers and programmers of IoMT nodes, have to face challenging optimization tasks, in order to execute fairly complex computing tasks on low-power wearable and portable processing systems, with tight power and battery lifetime budgets. In this work, we explore the implementation of a cognitive data analysis algorithm, based on a convolutional neural network trained to classify ECG waveforms, on a resource-constrained microcontroller-based computing platform. To minimize power consumption, we add an adaptivity layer that dynamically manages the hardware and software configuration of the device to adapt it at runtime to the required operating mode. Our experimental results show that adapting the node setup to the workload at runtime can save up to 50 quantized neural network reaches an accuracy value higher than 97 arrhythmia disorders detection on MIT-BIH Arrhythmia dataset.

READ FULL TEXT

page 12

page 14

page 19

research
01/13/2022

An adaptable cognitive microcontroller node for fitness activity recognition

The new generation of wireless technologies, fitness trackers, and devic...
research
08/05/2021

A Method for Medical Data Analysis Using the LogNNet for Clinical Decision Support Systems and Edge Computing in Healthcare

Edge computing is a fast-growing and much needed technology in healthcar...
research
04/04/2023

Arrhythmia Classifier Based on Ultra-Lightweight Binary Neural Network

Reasonably and effectively monitoring arrhythmias through ECG signals ha...
research
05/07/2022

Arrhythmia Classifier using Binarized Convolutional Neural Network for Resource-Constrained Devices

Monitoring electrocardiogram signals is of great significance for the di...
research
08/26/2020

An 8-bit In Resistive Memory Computing Core with Regulated Passive Neuron and Bit Line Weight Mapping

The rapid development of Artificial Intelligence (AI) and Internet of Th...
research
11/08/2019

AI Aided Noise Processing of Spintronic Based IoT Sensor for Magnetocardiography Application

As we are about to embark upon the highly hyped "Society 5.0", powered b...

Please sign up or login with your details

Forgot password? Click here to reset