An Adaptive Alternating-direction-method-based Nonnegative Latent Factor Model

04/11/2022
by   Yurong Zhong, et al.
0

An alternating-direction-method-based nonnegative latent factor model can perform efficient representation learning to a high-dimensional and incomplete (HDI) matrix. However, it introduces multiple hyper-parameters into the learning process, which should be chosen with care to enable its superior performance. Its hyper-parameter adaptation is desired for further enhancing its scalability. Targeting at this issue, this paper proposes an Adaptive Alternating-direction-method-based Nonnegative Latent Factor (A2NLF) model, whose hyper-parameter adaptation is implemented following the principle of particle swarm optimization. Empirical studies on nonnegative HDI matrices generated by industrial applications indicate that A2NLF outperforms several state-of-the-art models in terms of computational and storage efficiency, as well as maintains highly competitive estimation accuracy for an HDI matrix's missing data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset