An abstract theory of domain decomposition methods with coarse spaces of the GenEO family

04/01/2021 ∙ by Nicole Spillane, et al. ∙ 0

Two-level domain decomposition methods are preconditioned Krylov solvers. What separates one and two-level domain decomposition method is the presence of a coarse space in the latter. The abstract Schwarz framework is a formalism that allows to define and study a large variety of two-level methods. The objective of this article is to define, in the abstract Schwarz framework, a family of coarse spaces called the GenEO coarse spaces (for Generalized Eigenvalues in the Overlaps). This is a generalization of existing methods for particular choices of domain decomposition methods. Bounds for the condition numbers of the preconditioned operators are proved that are independent of the parameters in the problem (e.g., any coefficients in an underlying PDE or the number of subdomains). The coarse spaces are computed by finding low or high frequency spaces of some well chosen generalized eigenvalue problems in each subdomain.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.