Amplification by Shuffling without Shuffling
Motivated by recent developments in the shuffle model of differential privacy, we propose a new approximate shuffling functionality called Alternating Shuffle, and provide a protocol implementing alternating shuffling in a single-server threat model where the adversary observes all communication. Unlike previous shuffling protocols in this threat model, the per-client communication of our protocol only grows sub-linearly in the number of clients. Moreover, we study the concrete efficiency of our protocol and show it can improve per-client communication by one or more orders of magnitude with respect to previous (approximate) shuffling protocols. We also show a differential privacy amplification result for alternating shuffling analogous to the one for uniform shuffling, and demonstrate that shuffling-based protocols for secure summation based a construction of Ishai et al. (FOCS'06) remain secure under the Alternating Shuffle. In the process we also develop a protocol for exact shuffling in single-server threat model with amortized logarithmic communication per-client which might be of independent interest.
READ FULL TEXT