Almost Tight Bounds for Online Facility Location in the Random-Order Model

07/18/2022
by   Haim Kaplan, et al.
0

We study the online facility location problem with uniform facility costs in the random-order model. Meyerson's algorithm [FOCS'01] is arguably the most natural and simple online algorithm for the problem with several advantages and appealing properties. Its analysis in the random-order model is one of the cornerstones of random-order analysis beyond the secretary problem. Meyerson's algorithm was shown to be (asymptotically) optimal in the standard worst-case adversarial-order model and 8-competitive in the random order model. While this bound in the random-order model is the long-standing state-of-the-art, it is not known to be tight, and the true competitive-ratio of Meyerson's algorithm remained an open question for more than two decades. We resolve this question and prove tight bounds on the competitive-ratio of Meyerson's algorithm in the random-order model, showing that it is exactly 4-competitive. Following our tight analysis, we introduce a generic parameterized version of Meyerson's algorithm that retains all the advantages of the original version. We show that the best algorithm in this family is exactly 3-competitive. On the other hand, we show that no online algorithm for this problem can achieve a competitive-ratio better than 2. Finally, we prove that the algorithms in this family are robust to partial adversarial arrival orders.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset