Alleviating the Transit Timing Variations bias in transit surveys. II. RIVERS: Twin resonant Earth-sized planets around Kepler-1972 recovered from Kepler's false positive
Transit Timing Variations (TTVs) can provide useful information for systems observed by transit, by putting constraints on the masses and eccentricities of the observed planets, or even constrain the existence of non-transiting companions. However, TTVs can also prevent the detection of small planets in transit surveys, or bias the recovered planetary and transit parameters. Here we show that Kepler-1972 c, initially the "not transit-like" false positive KOI-3184.02, is an Earth-sized planet whose orbit is perturbed by Kepler-1972 b (initially KOI-3184.01). The pair is locked in a 3:2 Mean-motion resonance, each planet displaying TTVs of more than 6h hours of amplitude over the duration of the Kepler mission. The two planets have similar masses m_b/m_c =0.956_-0.051^+0.056 and radii R_b=0.802_-0.041^+0.042R_Earth, R_c=0.868_-0.050^+0.051R_Earth, and the whole system, including the inner candidate KOI-3184.03, appear to be coplanar. Despite the faintness of the signals (SNR of 1.35 for each transit of Kepler-1972 b and 1.10 for Kepler-1972 c), we recovered the transits of the planets using the RIVERS method, based on the recognition of the tracks of planets in river diagrams using machine learning, and a photo-dynamic fit of the lightcurve. Recovering the correct ephemerides of the planets is essential to have a complete picture of the observed planetary systems. In particular, we show that in Kepler-1972, not taking into account planet-planet interactions yields an error of ∼ 30% on the radii of planets b and c, in addition to generating in-transit scatter, which leads to mistake KOI3184.02 for a false positive. Alleviating this bias is essential for an unbiased view of Kepler systems, some of the TESS stars, and the upcoming PLATO mission.
READ FULL TEXT