Algorithms for the rainbow vertex coloring problem on graph classes

03/06/2020
by   Paloma T. Lima, et al.
0

Given a vertex-colored graph, we say a path is a rainbow vertex path if all its internal vertices have distinct colors. The graph is rainbow vertex-connected if there is a rainbow vertex path between every pair of its vertices. In the Rainbow Vertex Coloring (RVC) problem we want to decide whether the vertices of a given graph can be colored with at most k colors so that the graph becomes rainbow vertex-connected. This problem is known to be NP-complete even in very restricted scenarios, and very few efficient algorithms are known for it. In this work, we give polynomial-time algorithms for RVC on permutation graphs, powers of trees and split strongly chordal graphs. The algorithm for the latter class also works for the strong variant of the problem, where the rainbow vertex paths between each vertex pair must be shortest paths. We complement the latter result by showing that, for any fixed p≥ 3 the problem becomes NP-complete when restricted to split (S_3,...,S_p)-free graphs, where S_q denotes the q-sun graph.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset