Algorithms for reconstruction over single and multiple deletion channels

by   Sundara Rajan Srinivasavaradhan, et al.

Recent advances in DNA sequencing technology and DNA storage systems have rekindled the interest in deletion channels. Multiple recent works have looked at variants of sequence reconstruction over a single and over multiple deletion channels, a notoriously difficult problem due to its highly combinatorial nature. Although works in theoretical computer science have provided algorithms which guarantee perfect reconstruction with multiple independent observations from the deletion channel, they are only applicable in the large blocklength regime and more restrictively, when the number of observations is also large. Indeed, with only a few observations, perfect reconstruction of the input sequence may not even be possible in most cases. In such situations, maximum likelihood (ML) and maximum aposteriori (MAP) estimates for the deletion channels are natural questions that arise and these have remained open to the best of our knowledge. In this work, we take steps to answer the two aforementioned questions. Specifically: 1. We show that solving for the ML estimate over the single deletion channel (which can be cast as a discrete optimization problem) is equivalent to solving its relaxation, a continuous optimization problem; 2. We exactly compute the symbolwise posterior distributions (under some assumptions on the priors) for both the single as well as multiple deletion channels. As part of our contributions, we also introduce tools to visualize and analyze error events, which we believe could be useful in other related problems concerning deletion channels.



There are no comments yet.


page 1

page 2

page 3

page 4


The Error Probability of Maximum-Likelihood Decoding over Two Deletion Channels

This paper studies the problem of reconstructing a word given several of...

On The Decoding Error Weight of One or Two Deletion Channels

This paper tackles two problems that are relevant to coding for insertio...

Optimal Reconstruction Codes for Deletion Channels

The sequence reconstruction problem, introduced by Levenshtein in 2001, ...

Sequence Reconstruction Problem for Deletion Channels: A Complete Asymptotic Solution

Transmit a codeword x, that belongs to an (ℓ-1)-deletion-correcting code...

Trellis BMA: Coded Trace Reconstruction on IDS Channels for DNA Storage

Sequencing a DNA strand, as part of the read process in DNA storage, pro...

Sequencing by Emergence: Modeling and Estimation

Sequencing by Emergence (SEQE) is a new single-molecule nucleic acid (DN...

Coding for Sequence Reconstruction for Single Edits

The sequence reconstruction problem, introduced by Levenshtein in 2001, ...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.